Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Gene ; 913: 148398, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38518901

RESUMEN

The gene encoding the specific phosphohydrolase LONELY GUY (LOG) plays an important role in the activation of cytokinin and the stress response in plant cells. However, the role of LOG genes in castor bean (Ricinus communis) has not been reported. In this study, we identified a total of nine members of the LOG gene family in the castor bean genome and investigated the upregulated expression of the RcLOG5 gene using transcriptome data analysis. We found that the RcLOG5 gene exhibited tissue-specific expression and was activated by polyethylene glycol, NaCl, low temperature, and abscisic acid stress. The subcellular localization results showed that the RcLOG5 gene is mainly located in the cytoplasm. Based on phenotypic and physiological indicators, namely root length, peroxidase activity, and malondialdehyde content, overexpression of the RcLOG5 gene not only improved the drought resistance, salt tolerance, and cold tolerance of transgenic Arabidopsis, but also shortened the dormancy period of the transgenic plants. Transcriptomic sequencing revealed that the overexpression of the RcLOG5 gene led to the enrichment of differentially expressed genes in the glutathione metabolism pathway in transgenic Arabidopsis. Moreover, the overexpression plants had higher levels of glutathione and a higher GSH/GSSG ratio under stress compared to the wild type. Therefore, we inferred that the RcLOG5 gene may be responsible for regulating cell membrane homeostasis by reducing the accumulation of reactive oxygen species through the glutathione pathway. Overall, the overexpression of the RcLOG5 gene positively regulated the stress resistance of transgenic Arabidopsis. This study provides valuable gene resources for breeding stress-tolerant castor bean varieties.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Respuesta al Choque por Frío/genética , Sequías , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Glutatión/genética
2.
Int J Biol Macromol ; 264(Pt 1): 130481, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431017

RESUMEN

For applications in food industries, a fungal α-amylase from Malbranchea cinnamomea was engineered by directed evolution. Through two rounds of screening, a mutant α-amylase (mMcAmyA) was obtained with higher optimal temperature (70 °C, 5 °C increase) and better hydrolysis properties (18.6 % maltotriose yield, 2.5-fold increase) compared to the wild-type α-amylase (McAmyA). Site-directed mutations revealed that Threonine (Thr) 226 Serine (Ser) substitution was the main reason for the property evolution of mMcAmyA. Through high cell density fermentation, the highest expression level of Thr226Ser was 3951 U/mL. Thr226Ser was further used for bread baking with a dosage of 1000 U/kg flour, resulting in a 17.8 % increase in specific volume and a 35.6 % decrease in hardness compared to the control. The results were a significant improvement on those of McAmyA. Moreover, the mutant showed better anti-staling properties compared to McAmyA, as indicated by the improved sensory evaluation after 4 days of storage at 4 and 25 °C. These findings provide insights into the structure-function relationship of fungal α-amylase and introduce a potential candidate for bread-making industry.


Asunto(s)
Pan , alfa-Amilasas , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Hidrólisis , Trisacáridos
3.
Water Res ; 254: 121373, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447374

RESUMEN

As a kind of novel and persistent environmental pollutants, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been frequently detected in different aquatic environment, posing potential risks to public health and ecosystems, resulting in a biosecurity issue that cannot be ignored. Therefore, in order to control the spread of antibiotic resistance in the environment, advanced oxidation technology (such as Fenton-like, photocatalysis, electrocatalysis) has become an effective weapon for inactivating and eliminating ARB and ARGs. However, in the process of advanced oxidation technology, studying and regulating catalytic active sites at the molecular level and studying the adsorption and surface oxidation reactions between catalysts and ARGs can achieve in-depth exploration of the mechanism of ARGs removal. This review systematically reveals the catalytic sites and related mechanisms of catalytic antagonistic genes in different advanced oxidation processes (AOPs) systems. We also summarize the removal mechanism of ARGs and how to reduce the spread of ARGs in the environment through combining a variety of characterization methods. Importantly, the potential of various catalysts for removing ARGs in practical applications has also been recognized, providing a promising approach for the deep purification of wastewater treatment plants.


Asunto(s)
Bacterias , Genes Bacterianos , Bacterias/genética , Aguas Residuales , Ecosistema , Antagonistas de Receptores de Angiotensina/farmacología , Antibacterianos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología
4.
Pest Manag Sci ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385791

RESUMEN

BACKGROUND: Apolygus lucorum, a major cotton pest, has undergone a significant expansion of the FMRFaR gene within the GPCR superfamily, resulting in two classes of GPCR, namely FMRFaR (A54-55) and newly duplicated FMRFaR-like (A56-62). Notably, FMRFaR-like genes, particularly A62, show enhanced expression in the legs and wings of adults, indicating their potential role in locomotion. Employing A62 as a representative of FMRFaR-like, our study investigates the influence of FMRFa, FMRFaR, and FMRFaR-like on locomotion and development of A. lucorum. RESULTS: FMRFaR and FMRFa exhibit comparable temporal and tissue expression patterns, whereas the FMRFaR-like genes within A. lucorum exhibit completely distinct evolutionary and expression patterns compared to classical FMRFaR. RNA interference (RNAi) experiments revealed that suppressing FMRFa expression results in complete lethality in A. lucorum, but neither FMRFaR nor A62 exhibit the same effect after RNAi. Suppressing the expression of FMRFa only decreases the expression of the A54 gene simultaneously, suggesting that A54 may function as a classical FMRFaR activated by FMRFa. RNAi of A62 leads to wing malformation and a significant reduction in spontaneous movement behavior in A. lucorum. Further transcriptomic analysis revealed that A62 affects the A. lucorum's movement behavior through energy metabolism pathways and motor protein pathways. CONCLUSION: Our study unveils the unique and complex roles of FMRFa and its receptor in A. lucorum. These findings provide valuable insights into potential targets for pest control strategies aimed at managing A. lucorum populations in cotton fields. © 2024 Society of Chemical Industry.

5.
FEBS J ; 291(9): 2009-2022, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380733

RESUMEN

Laminaripentaose (L5)-producing ß-1,3-glucanases can preferentially cleave the triple-helix curdlan into ß-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, ß-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a ß-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/ß) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical ß-1,3-glucan. A catalytic framework (ß6-ß9-ß10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of ß-1,3-glucanases but will also provide a basis for further enzyme engineering.


Asunto(s)
Oligosacáridos , Streptomyces , beta-Glucanos , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato , beta-Glucanos/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/química , Secuencia de Aminoácidos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Concentración de Iones de Hidrógeno , Cinética
6.
Small Methods ; 8(3): e2301043, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009526

RESUMEN

As the field of low-dimensional materials (1D or 2D) grows and more complex and intriguing structures are continuing to be found, there is an emerging need for techniques to characterize the nanoscale mechanical properties of all kinds of 1D/2D materials, in particular in their most practical state: sitting on an underlying substrate. While traditional nanoindentation techniques cannot accurately determine the transverse Young's modulus at the necessary scale without large indentations depths and effects to and from the substrate, herein an atomic-force-microscopy-based modulated nanomechanical measurement technique with Angstrom-level resolution (MoNI/ÅI) is presented. This technique enables non-destructive measurements of the out-of-plane elasticity of ultra-thin materials with resolution sufficient to eliminate any contributions from the substrate. This method is used to elucidate the multi-layer stiffness dependence of graphene deposited via chemical vapor deposition and discover a peak transverse modulus in two-layer graphene. While MoNI/ÅI has been used toward great findings in the recent past, here all aspects of the implementation of the technique as well as the unique challenges in performing measurements at such small resolutions are encompassed.

7.
Gen Comp Endocrinol ; 347: 114435, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135222

RESUMEN

The G Protein-Coupled Receptor (GPCR) superfamily is the largest and most diverse transmembrane receptor family, playing crucial roles in regulating various physiological processes. As one of the most destructive pests, aphids have been subject to previous studies, which revealed fewer GPCR superfamily members in Acyrthosiphon pisum and Aphis gossypii and the loss of multiple neuropeptide GPCRs. To elucidate the contraction patterns and evolutionary features of the aphid GPCR superfamily, we identified 97, 105, and 95 GPCR genes in Rhopalosiphum maidis, A. pisum, and A. gossypii, respectively. Comparative analysis and phylogenetic investigations with other hemipteran insects revealed a contracted GPCR superfamily in aphids. This contraction mainly occurred in biogenic amine receptors, GABA-B-R, and fz families, and several neuropeptide receptors such as ACPR, CrzR, and PTHR were completely lost. This phenomenon may be related to the parasitic nature of aphids. Additionally, several GPCRs associated with aphid feeding and water balance underwent duplication, including Lkr, NPFR, CCHa1-R, and DH-R, Type A LGRs, but the SK/CCKLR that inhibits feeding was completely lost, indicating changes in feeding genes that underpin the aphid's prolonged phloem feeding behavior. Furthermore, we observed fine-tuning in opsins, with reduced long-wavelength opsins and additional duplications of short-wavelength opsin, likely associated with daytime activity. Lastly, we found variations in the number of mthl genes in aphids. In conclusion, our investigation sheds light on the GPCR superfamily in aphids, revealing its association with diet lifestyle and laying the foundation for understanding and developing control strategies for the aphid GPCR superfamily.


Asunto(s)
Áfidos , Animales , Áfidos/genética , Filogenia , Floema , Conducta Alimentaria/fisiología , Receptores Acoplados a Proteínas G/genética , Opsinas/genética
8.
Mucosal Immunol ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38007004

RESUMEN

Dry eye disease (DED) is a prevalent chronic eye disease characterized by an aberrant inflammatory response in ocular surface mucosa. The immunological alterations underlying DED remain largely unknown. In this study, we employed single-cell transcriptome sequencing of conjunctival tissue from environment-induced DED mice to investigate multicellular ecosystem and functional changes at different DED stages. Our results revealed an epithelial subtype with fibroblastic characteristics and pro-inflammatory effects emerging in the acute phase of DED. We also found that T helper (Th)1, Th17, and regulatory T cells (Treg) were the dominant clusters of differentiation (CD)4+ T-cell types involved in regulating immune responses and identified three distinct macrophage subtypes, with the CD72+CD11c+ subtype enhancing chronic inflammation. Furthermore, bulk transcriptome analysis of video display terminal-induced DED consistently suggested the presence of the pro-inflammatory epithelial subtype in human conjunctiva. Our findings have uncovered a DED-associated pro-inflammatory microenvironment in the conjunctiva, centered around epithelial cells, involving interactions with macrophages and CD4+ T cells, which deepens our understanding of ocular surface mucosal immune responses during DED progression.

9.
J Agric Food Chem ; 71(41): 15194-15203, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37807677

RESUMEN

CRISPR/Cas9 system-mediated multi-copy expression of an alkaline serine protease (AoproS8) from Aspergillus oryzae was successfully built in Aspergillus niger. Furthermore, AoproS8 was continuously knocked in the glaA, amyA, and aamy gene loci in A. niger to construct multi-copy expression strains. The yield of the AoproS8 3.0 strain was 2.1 times higher than that of the AoproS8 1.0 strain. Then, a high protease activity of 11,023.2 U/mL with a protein concentration of 10.8 mg/mL was obtained through fed-batch fermentation in a 5 L fermenter. This is the first report on the high-level expression of alkaline serine proteases in A. niger. AoproS8 showed optimal activity at pH 9.0 and 40 °C. It was used for the production of xanthine oxidase (XOD)-inhibitory peptides from eight food processing protein by-products. Among them, the duck hemoglobin hydrolysates showed the highest XOD-inhibitory activity with an IC50 value of 2.39 mg/mL. Thus, our work provides a useful way for efficient expression of proteases in A. niger and high-value utilization of protein by-products.


Asunto(s)
Aspergillus niger , Xantina Oxidasa , Aspergillus niger/genética , Aspergillus niger/metabolismo , Xantina Oxidasa/metabolismo , Serina Proteasas/genética , Serina Proteasas/metabolismo , Sistemas CRISPR-Cas , Serina/metabolismo , Péptidos/genética , Péptidos/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-37713926

RESUMEN

Spodoptera frugiperda, a major invasive pest, causes severe damage to various economically important crops. Previous comparative genomics studies have revealed a close association between the invasiveness of S. frugiperda and its genome. In recent years, a vast amount of genome from lepidopteran species has become available, offering an opportunity for a more detailed and comprehensive understanding of the biological characteristics of S. frugiperda. In this study, we conducted a comprehensive comparative genomics analysis of S. frugiperda using genome from 46 lepidopteran species. We found the highest number of gene family expansion events in S. frugiperda, indicating that gene family expansion is a crucial mechanism in its adaptive evolution. The expanded gene families are enriched in various biological processes, including nutrient metabolism, development, stress response, reproduction, and immune processes, suggesting that the expansion of these gene families likely contributes to the strong environmental adaptability of S. frugiperda. Furthermore, we identified the expansion of histone gene families in S. frugiperda which resulted from chromosome segmental duplications after the divergence from closely related species. Expression analysis of histone genes indicated that certain members might exert an influence on the growth and reproduction processes of S. frugiperda. Overall, our study deepens our understanding of the biological characteristics of S. frugiperda, providing a theoretical basis for the comprehensive management and sustained control of S. frugiperda and other lepidopteran pests in the future.


Asunto(s)
Histonas , Animales , Spodoptera/genética
11.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2861-2873, 2023 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-37584136

RESUMEN

Auto-inhibited Ca2+-ATPase (ACA) is one of the Ca2+-ATPase subfamilies that plays an important role in maintaining Ca2+ concentration balance in plant cells. To explore the function and gene expression pattern of the RcACA gene family in castor, bioinformatics analysis was used to identify the members of the RcACA gene family in castor. The basic physical and chemical properties, subcellular location, protein secondary and tertiary structure, conserved domain, conserved motif, gene structure, chromosome location and collinear relationship, as well as the evolutionary characteristics and promoter cis-acting elements were predicted and analyzed. The expression pattern of the RcACA gene under abiotic stress was analyzed by expression (fragments per kilobase of exon model per million mapped fragments, FPKM) in castor transcriptome data. The results showed that 8 RcACA gene family members were identified in castor, acidic proteins located in the plasma membrane. In the secondary structure of all proteins, the α-helix and random coil is more; the RcACA genes were clustered into three categories, and the design of the genes in the same category was similar to the conserved motif. Both of them had four typical domains, RcACA3-RcACA8 had a Ca2+-ATPase N-terminal autoinhibitory domain. The RcACA gene is mostly located on the long arm of the chromosome and has 2 pairs of collinear relationships. There are more light response elements but fewer hormone-induced elements located upstream of the RcACA coding region. Interspecific clustering showed that the evolution of ACA genes among species was conservative. Tissue expression pattern analysis showed that RcACA genes showed apparent tissue expression specificity, and most of the genes showed the highest expression level in male flowers. Expression analysis under abiotic stress showed that RcACA2-RcACA8 were up-regulated under high salt and drought stress, and RcACA1 was up-regulated at 0-24 h under low-temperature stress, indicating that RcACA genes positively responded to abiotic stresses. The above results provide a theoretical basis for exploring the role of the RcACA gene in castor growth, development and stress response.


Asunto(s)
Genoma de Planta , Estrés Fisiológico , Estrés Fisiológico/genética , Transcriptoma , Regiones Promotoras Genéticas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Insect Mol Biol ; 32(6): 676-688, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37462221

RESUMEN

Alpha-ketoglutarate-dependent dioxygenase ALKB homologue 4 (ALKBH4) is a member of the Fe (II) and 2-oxoglutarate-dependent ALKB homologue family that plays important roles in epigenetic regulation by alkyl lesions removal in mammals. However, the roles of ALKBH4 in insects are not clear. Here, TcALKBH4 was cloned and functionally characterised in Tribolium castaneum. Temporal expression revealed that TcALKBH4 was highly expressed in early embryos and early pupae. Spatial expression showed that TcALKBH4 was highly expressed in the adult testis, and followed by the ovary. RNA interference targeting TcALKBH4 at different developmental stages in T. castaneum led to apparent phenotypes including the failure of development in larvae, the reduction of food intake and the deficiency of fertility in adult. However, further dot blot analyses showed that TcALKBH4 RNAi does not seem to influence 6 mA levels in vivo. qRT-PCR was used to further explore the underlying molecular mechanisms; the result showed that TcALKBH4 mediates the development of larvae possibly through 20E signalling pathway, and the fertility of female and male adult might be regulated by the expression of vitellogenesis and JH signalling pathway, respectively. Altogether, these findings will provide new insights into the potential function of ALKBH4 in insects.


Asunto(s)
Escarabajos , Tribolium , Femenino , Masculino , Animales , Tribolium/genética , Epigénesis Genética , Larva/genética , Interferencia de ARN , Mamíferos
13.
Foods ; 12(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37297451

RESUMEN

In this study, a novel strategy for accelerating the production of pumpable ice slurry (PIS) by using ozone micro-nano bubbles (O3-MNBs) was proposed. The effect of PIS containing sodium alginate (SA) and O3-MNBs on the preservation of small yellow croaker (Larimichthys polyactis) was investigated. The results indicate that using SA solution containing O3-MNBs instead of only SA solution resulted in quicker production of PIS by promoting ice nucleation and eliminating supercooling. The distribution and positive effect of O3-MNBs as a nucleation agent on freezing characteristics were discussed. Microbial concentrations, pH, total volatile basic nitrogen, and thiobarbituric acid reactive substance content were also examined. Storage in novel PIS (containing O3-MNBs) had higher performance than storage in flake ice or conventional PIS due to the strong bacteriostatic ability of O3. Therefore, O3-MNBs injection can be used as a novel method for PIS production and the preservation of fresh marine products.

14.
Nat Commun ; 14(1): 3538, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322015

RESUMEN

In heterogeneous catalysis, uncovering the dynamic evolution of active sites in the working conditions is crucial to realizing increased activity and enhanced stability of catalyst in Fenton-like activation. Herein, we capture the dynamic changes in the unit cell of Co/La-SrTiO3 catalyst during the exemplary peroxymonosulfate activation process using X-ray absorption spectroscopy and in situ Raman spectroscopy, revealing the substrate tuned its structural evolution, which is the reversible stretching vibration of O-Sr-O and Co/Ti-O bonds in different orientations. This process effectively promotes the generation of key SO5* intermediates, which is beneficial to the formation of 1O2 and SO4•- from persulfate on the Co active site. Density functional theory and X-ray absorption spectroscopy show that the optimized structural distortion enhanced the metal-oxygen bond strength by tuning the eg orbitals and increased the number of transferred electrons to peroxymonosulfate by about 3-fold, achieving excellent efficiency and stability in removing organic pollutants.


Asunto(s)
Hierro , Purificación del Agua , Hierro/química , Peróxido de Hidrógeno/química , Dominio Catalítico , Oxidación-Reducción , Oxígeno , Purificación del Agua/métodos
15.
Food Chem ; 423: 136300, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37196410

RESUMEN

The gelatin/gellan gum based-bilayer emulsion film was developed in this work to improve the survivability of Bifidobacterium longum during the storage process. The baobab seed oil (BO) was added to the gelatin (GE) matrix to develop emulsion film as the barrier outer layer. The blueberry anthocyanin extract (BE) was incorporated into the gellan gum (GG)-based inner layer to enhance the viability of B. longum. The SEM and FTIR results revealed that the probiotics were successfully entrapped in BO/BE-loaded bilayer film. The greatest survivability and viable cell numbers of the B. longum during the storage period were observed in the BO/BE loaded bilayer film. Furthermore, the stability of the colorful patterns by electrochemical writing was also evaluated in this work. Finally, the GE/BO-GG/BE/BM maintain satisfactory probiotic viability in steamed bread coating application. Hence, the GE/BO-GG/BE/BM bilayer film could be considered a novel material to deliver and protect the probiotics in food applications.


Asunto(s)
Bifidobacterium longum , Probióticos , Bifidobacterium , Emulsiones , Gelatina , Probióticos/química
16.
Foods ; 12(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048202

RESUMEN

Functional oligosaccharides exert obesity-reducing effects by acting at various pathological sites responsible for the development of obesity. In this study, tamarind xyloglucan oligosaccharides (TXOS) were used to attenuate metabolic disorders via the gut-liver axis in mice with high-fat-diet (HFD)-induced obesity, as determined through LC/MS-MS and 16S rRNA sequencing technology. A TXOS dose equivalent to 0.39 g/kg/day in humans restored the gut microbiota in obese mice, which was in part supported by the key microflora, particularly Bifidobacterium pseudolongum. Moreover, TXOS reduced the abundance of opportunistic pathogen species, such as Klebsiella variicola and Romboutsia ilealis. The bodyweight and weight gain of TXOS-treated (4.8 g/kg per day) mice began to decrease at the 14th week, decreasing by 12.8% and 23.3%, respectively. Sixteen fatty acids were identified as potential biomarkers in the liver, and B. pseudolongum and caprylic acid were found to tightly regulate each other. This was associated with reduced inflammation in the liver, circulation, and adipose tissue and protection from metabolic disorders. The findings of this study indicate that TXOS can significantly increase the gut microbiota diversity of obese mice and restore the HFD-induced dysbiosis of gut microbiota.

17.
Angew Chem Int Ed Engl ; 62(23): e202303807, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37062701

RESUMEN

Molecular oxygen (O2 ) activation technology is of great significance in environmental purification due to its eco-friendly operation and cost-effective nature. However, the activation of O2 is limited by spin-forbidden transitions, and efficient molecular oxygen activation depends on electronic behavior and surface adsorption. Herein, we prepared cationic defect-rich Bi4 Ti3 O12 (BTO-MV2) catalysts containing Ti vacancies (VTi ) for O2 activation in water purification. The VTi on BTO nanosheets can induce electron spin polarization, increasing the number of spin-down photogenerated electrons and reducing the recombination of electron-hole pairs. An active surface VTi is also formed, serving as a center for adsorbing O2 and extracting electrons, effectively generating ⋅OH, O2 ⋅- and 1 O2 . The degradation rate constant of tetracycline achieved by BTO-MV2 is 3.3 times faster than BTO, indicating a satisfactory prospect for practical application. This work provides an efficient pathway to activate molecular oxygen by constructing new active sites through cationic vacancy modification technology.

18.
J Adv Res ; 52: 119-134, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37085001

RESUMEN

INTRODUCTION: Dietary oligosaccharides can impact the gut microbiota and confer tremendous health benefits. OBJECTIVES: The aim of this study was to determine the impact of a novel functional oligosaccharide, neoagarotetraose (NAT), on aging in mice. METHODS: 8-month-old C57BL/6J mice as the natural aging mice model were orally administered with NAT for 12 months. The preventive effect of NAT in Alzheimer's disease (AD) mice was further evaluated. Aging related indicators, neuropathology, gut microbiota and short-chain fatty acids (SCFAs) in cecal contents were analyzed. RESULTS: NAT treatment extended the lifespan of these mice by up to 33.3 %. Furthermore, these mice showed the improved aging characteristics and decreased injuries in cerebral neurons. Dietary NAT significantly delayed DNA damage in the brain, and inhibited reduction of tight junction protein in the colon. A significant increase at gut bacterial genus level (such as Lactobacillus, Butyricimonas, and Akkermansia) accompanied by increasing concentrations of SCFAs in cecal contents was observed after NAT treatment. Functional profiling of gut microbiota composition indicated that NAT treatment regulated the glucolipid and bile acid-related metabolic pathways. Interestingly, NAT treatment ameliorated cognitive impairment, attenuated amyloid-ß (Aß) and Tau pathology, and regulated the gut microbiota composition and SCFAs receptor-related pathway of Alzheimer's disease (AD) mice. CONCLUSION: NAT mitigated age-associated cerebral injury in mice through gut-brain axis. The findings provide novel evidence for the effect of NAT on anti-aging, and highlight the potential application of NAT as an effective intervention against age-related diseases.


Asunto(s)
Enfermedad de Alzheimer , Eje Cerebro-Intestino , Ratones , Animales , Longevidad , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/microbiología , Ratones Endogámicos C57BL , Envejecimiento , Encéfalo/metabolismo , Encéfalo/patología
19.
Food Chem ; 418: 135941, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36989650

RESUMEN

The Transient Receptor Potential Vanilloid 1 (TRPV1) has been identified as a suitable candidate for a spicy taste (Zanthoxylum plant) sensor. In this study, we investigated the response of TRPV1 expressed on human HepG2 cell membranes following stimulation with Hydroxy-α-sanshool. A three-dimensional (3D) cell-based electrochemical sensor was fabricated by layering cells expressing hTRPV1. l-cysteine/AuNFs electrodes were functionalized on indium tin oxide-coated glass (ITO) to enhance the sensor's selectivity and sensitivity. HepG2 cells were encapsulated in sodium alginate/gelatin hydrogel to create a 3D cell cultivation system, which was immobilized on the l-cysteine/AuNFs/ITO to serve as biorecognition elements. Using differential pulse voltammetry (DPV), the developed biosensor was utilized to detect Hydroxy-α-sanshool, a representative substance in Zanthoxylum bungeanum Maxim. The result obtained from DPV was linear with Hydroxy-α-sanshool concentrations ranging from 0 to 70 µmol/L, with a detection limit of 2.23 µmol/L. This biosensor provides a sensitive and novel macroscopic approach for TRPV1 detection.


Asunto(s)
Técnicas Biosensibles , Zanthoxylum , Humanos , Gusto , Cisteína , Alcamidas Poliinsaturadas/química , Electrodos , Zanthoxylum/química , Técnicas Electroquímicas , Límite de Detección
20.
Foods ; 12(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36766184

RESUMEN

The study was proposed to investigate the effects of pulsed pressure curing on the beef absorption of the curing solution, cooking loss, moisture content, centrifugal loss, salt content, sensory attributes, texture, microstructures and volatile compounds. Curing methods include the following four treatments: (1) control group 1-static curing (SC); (2) control group 2-vacuum curing (VC); (3) control group 3-pressurized curing (PC); and (4) treatment group-pulsed pressure curing (PPC). The acquired results revealed that pulsed pressure curing significantly boosts the curing efficiency and moisture content, decreases cooking loss in beef, brightens meat color, and enhances texture compared to static curing, vacuum curing, and pressurized curing. Additionally, centrifugal losses were not impaired, and sensory findings revealed that PPC significantly improved the saltiness of beef. TPA results showed that the springiness and cohesiveness of PPC were greatly increased, and hardness and chewiness were significantly reduced. Moreover, PPC significantly reduced the content of 1-octen-3-ol and 1-hexanol. Scanning electron microscopy (SEM) images documented that pulsed pressure curing can effectively increase the tenderness of beef. This study demonstrates that processed meat product efficiency and sensory attributes should be taken into account when selecting a curing technique, and the PPC technique has an advantage in both areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...